The View Layer

In an MV C application, the View layer provides an interface to your application, be it for
users with a browser or for another application using something like Web services. Basically
the View layer is the conduit for getting data in and out of the application. It does not contain
business logic, such as calculating interest for a banking application or storing items in a
shopping cart for an online catalog. The View layer also does not contain any code for
persisting data to or retrieving data from a data source. Rather, it is the Model layer that

manages business logic and data access. The View layer simply concentrates on the interface.

Keeping the Model and View layers separate from one another allows an application’s
interface to change independent of the Model layer and vice versa. This separation also
allows the application to have multiple interfaces (or views). For instance, an application
could have a Web interface and a wireless interface. In this case, each interface is separate,
but both use the same Model layer code without the Model layer being tied to either interface

or either interface having to know about the other interface.
Struts and the View Layer

Struts provides a rich set of functionality and features for developing the View layer of MVC
applications. There are several forms that the View layer of a Struts application can take. It
can be HTML/JSP (the most common case) or it can be XML/XSLT, Velocity, Swing, or
whatever your application requires. This is the power of Struts and MVC. Because
HTML/JSP is the typical View technology used for Java-based Web applications, Struts
provides the most functionality and features for developing your application this way. The
remainder of this chapter focuses on Struts’ support for creating the View layer using

HTML/JSP.

Struts” HTML/JSP View layer support can be broken down into the following major

components:

o JSP pages
o [Form Beans
o JSP tag libraries

o Resource bundles



Each of these components is examined in detail in this chapter, but first it is helpful to

understand how they fit together in the View layer.

JSP pages are at the center of the View components; they contain the HTML that is sent to
browsers for users to see and they contain JSP library tags. The library tags are used to
retrieve data from Form Beans and to generate HTML forms that, when submitted, will
populate Form Beans. Additionally, library tags are used to retrieve content from resource
bundles. Together, all of Struts’ View layer components are used to generate HTML that

browsers render. This is what the user sees.

On the back side, the View layer populates Form Beans with data coming from the HTML
interface. The Controller layer then takes the Form Beans and manages getting their data and
putting it into the Model layer. Additionally, the Controller layer takes data from the Model

layer and populates Form Beans so that the data can be presented in the View layer.
The following sections explain each of these major View components in detail.
JSP Pages

JSPs are the centerpiece of the Struts View layer. They contain the static HTML and JSP
library tags that generate dynamic HTML. Together the static and dynamically generated
HTML gets sent to the user’s browser for rendering. That is, the JSPs contain the code for the

user interface with which a user interacts.

JSPs in Struts applications are like JSPs in any other Java-based Web application. However,
to adhere to the MVC paradigm, the JSPs should not contain any code for performing
business logic or code for directly accessing data sources. Instead, the JSPs are intended to be
used solely for displaying data and capturing data. Struts provides a set of tag libraries that
supports displaying data and creating HTML forms that capture data. Additionally, the tags
support displaying content stored in resource bundles. Therefore, JSPs (coupled with Form
Beans) provide the bulk of the Struts View layer. The JSP tag libraries glue those two

together and the resource bundles provide a means of content management.

Form Beans



Form Beans provide the conduit for transferring data between the View and Controller layers
of Struts applications. When HTML forms are submitted to a Struts application, Struts takes
the incoming form data and uses it to populate the form’s corresponding Form Bean. The
Struts Controller layer then uses the Form Beans to access data that must be sent to the Model
layer. On the flip side, the Controller layer populates Form Beans with Model layer data so
that it can be displayed with the View layer. Essentially, Form Beans are simple data
containers. They either contain data from an HTML form that is headed to the Model via the

Controller or contain data from the Model headed to the View via the Controller.

Form Beans are basic Java beans with getter and setter methods for each of their properties,
allowing their data to be set and retrieved easily. The org.apache.struts
.action.ActionForm class is the base abstract class that all Form Beans must subclass.
Because Form Beans are simple data containers, they are principally comprised of fields, and
setter and getter methods for those fields. Business logic and data access code should not be
placed in these classes. That code goes in Model layer classes. The only other methods that
should be in these classes are helper methods or methods that override ActionForm’s

base reset( ) and validate( ) methods.

The ActionForm class has a reset( ) method and a validate( ) method that are intended to be
overridden by subclasses where necessary. The reset( ) method is a hook that Struts calls
before the Form Bean is populated from an HTML form submission. The validate( ) method
is a hook that Struts calls after the Form Bean has been populated from an HTML form

submission. Both of these methods are described in detail later in this section.
Following is an example Form Bean:

import org.apache.struts.action.ActionForm; public class EmployeeForm extends
ActionForm { private String firstName; private String lastName; private String
department; public void setFirstName(String firstName) {  this.firstName =
firstName; } public String getFirstName() { return firstName; } public void
setLastName(String lastName) {  this.lastName = lastName; } public String
getLastName() { return lastName; } public void setDepartment(String department)
{ this.department = department; } public String getDepartment() { return
department; }}



Form Bean properties can be of any object type, be it a built-in class like String or a complex
application-specific class such as an Address object that has fields for street address, city,
state, and ZIP. Struts uses reflection to populate the Form Beans and can traverse object
hierarchies to any level so long as the getter and setter methods are public. For example, if
your Form Bean had an Address object field named address, to access the city field on

the Address object the Form Bean would need a public getAddress( ) method that returned
an Address object. The Address object would need a public getCity( ) method that would

return a String.

Often, it’s best to have Form Bean fields be Strings instead of other types. For example,
instead of having an Integer-type field for storing a number, it’s best to use a String-type
field. This is because all HTML form data comes in the form of strings. If a letter rather than
a number is entered in a numeric field, it’s better to store the value in a String so that the
original data can be returned to the form for correcting. If instead the data is stored in a Long,
when Struts attempts to convert the string value to a number, it will throw

a NumberFormatException if the value is a letter. Then, when the form is redisplayed
showing the invalid data, it will show 0 instead of the originally entered value, because letters

cannot be stored in numeric-type fields.

Configuring Form Beans

To use Form Beans, you have to configure them in the Struts configuration file. Following is

a basic Form Bean definition:

<!-- Form Beans Configuration --> <form-beans> <form-bean

name="searchForm" type="com.jamesholmes.minihr.SearchForm"/> </form-beans>
Form Bean definitions specify a logical name and the class type for a Form Bean. Once
defined, Form Beans are associated with actions by action mapping definitions, as shown

next:

<!-- Action Mappings Configuration --> <action-mappings> <action
path="/search" type="com.jamesholmes.minihr.SearchAction" name=""searchF

orm scope="request" validate="true" input="/search.jsp"> </action>

</action-mappings>



Actions specify their associated Form Bean with the name attribute of the action tag, as
shown in the preceding snippet. The value specified for the name attribute is the logical name
of a Form Bean defined with the form-bean tag. The action tag also has a scope attribute to
specify the scope that the Form Bean will be stored in and a validate attribute to specify
whether or not the Form Bean’s validate( ) method should be invoked after the Form Bean is
populated.

The reset( ) Method

As previously stated, the abstract ActionForm class has a reset( ) method that subclasses can
override. The reset( ) method is a hook that gets called before a Form Bean is populated with
request data from an HTML form. This method hook was designed to account for a
shortcoming in the way browsers handle check boxes. Browsers send the value of a check
box only if it is checked when the HTML form is submitted. For example, consider an HTML

form with a check box for whether or not a file is read-only:

<input type="checkbox™ name="readonly" value="true">
When the form containing this check box is submitted, the value of “true” is sent to the server

only if the check box is checked. If the check box is not checked, no value is sent.

For most cases, this behavior is fine; however, it is problematic when Form

Bean boolean properties have a default value of “true.” For example, consider the read-only
file scenario again. If your application has a Form Bean with a read-only property set to true
and the Form Bean is used to populate a form with default settings, the read-only property
will set the read-only check box’s state to checked when it is rendered. If a user decides to
uncheck the check box and then submits the form, no value will be sent to the server to
indicate that the check box has been unchecked (i.e., set to false). By using the reset(

) method, this can be solved by setting all properties tied to check boxes to false before the
Form Bean is populated. Following is an example implementation of a Form Bean with

a reset( ) method that accounts for unchecked check boxes:

import org.apache.struts.action.ActionForm; public class FileForm extends ActionForm

{ private boolean readOnly; public void setReadOnly(boolean readOnly) { this.readOnly
=readOnly; } public boolean getReadOnly() { return readOnly; } public void reset()
{ readOnly = false; }}



The reset( ) method in this example class ensures that the readOnly property is set to false
before the form is populated. Having the reset( ) method hook is equivalent to having the

HTML form actually send a value for unchecked check boxes.

A side benefit of the reset( ) method hook is that it offers a convenient place to reset data
between requests when using Form Beans that are stored in session scope. When Form Beans
are stored in session scope, they persist across multiple requests. This solution is most often
used for wizard-style process flows. Sometimes it’s necessary to reset data between requests,

and the reset( ) method provides a convenient hook for doing this.
The validate( ) Method

In addition to the reset( ) method hook, the ActionForm class provides a validate( ) method
hook that can be overridden by subclasses to perform validations on incoming form data.
The validate( ) method hook gets called after a Form Bean has been populated with incoming

form data. Following is the method signature for the validate( ) method:

public ActionErrors validate(ActionMapping mapping, HttpServletRequest
request)

Notice that the validate( ) method has a return type of ActionErrors.

The org.apache.struts.action.ActionErrors class is a Struts class that is used for storing
validation errors that have occurred in the validate( ) method. If all validations in

the validate( ) method pass, a return value of null indicates to Struts that no errors occurred.

Note Form Bean data validations could be performed in action classes; however, having them
in Form Beans allows them to be reused across multiple actions where more than one
action uses the same Form Bean. Having the validation code in each action would be
redundant.

Following is an example Form Bean with a validate( ) method:

import javax.servlet.http.HttpServletRequest; import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors; import org.apache.struts.action.ActionForm;
import org.apache.struts.action. ActionMapping; public class NameForm extends ActionForm
{ private String name; public void setName(String name) {  this.name =

name; } public String getName() { returnname; } public ActionErrors



validate(ActionMapping mapping,  HttpServletRequest request) { if (name == null ||
name.length() <1) {  ActionErrors errors = new

ActionErrors(); errors.add("name”, new

ActionError("error.name.required")); returnerrors; } returnnull; }}

This example Form Bean has one field, name, that is validated in the validate( ) method.
The validate( ) method checks whether or not the name field is empty. If it is empty, it
returns an error indicating that fact. The ActionErrors object is basically a collection class
for storing org.apache.struts.action.ActionError instances. Each validation inside

the validate( ) method creates an ActionError instance that gets stored in

the ActionErrors object. The ActionError class takes a key to an error message stored in
the Struts resource bundle. Struts uses the key to look up the corresponding error message.
The ActionError class also has constructors that take additional arguments that contain

replacement values for the error message associated with the specified key.

Struts also has a built-in Validator framework that greatly simplifies performing data
validations. The Validator framework allows you to declaratively configure in an XML file
the validations that should be applied to Form Beans. For more information on the Validator

framework, see Chapter 6.

Note The validate( ) method will be called only if the Form Bean has been configured for
validation in the Struts configuration file.

The Lifecycle of Form Beans

Form Beans have a defined lifecycle in Struts applications. To fully understand how Form
Beans work, it’s necessary to understand this lifecycle. The Form Bean lifecycle is shown in

Figure 4-1.



Browser

Y

Controller serviet

v
’ Retrieve or create Form Bean |

v
\ Store Form Bean in specified scope }

v
[ Call reset{ ) method on Form Bean ‘

A 4
’ Populate Form Bean with request data J

v
’ Call validate{ ) method on Form Bean J

Errors found __— No errors

I Forward to input page ‘ Call action's execute( ) method

Figure 4-1: The Form Bean lifecycle

Following is an explanation of the Form Bean lifecycle. When a request is received by the
Struts controller servlet, Struts maps the request to an action class that is delegated to process
the request. If the action being delegated to has an associated Form Bean, Struts attempts to
look up the specified Form Bean in request or session scope, based on how the action is
configured in the Struts configuration file. If an instance of the Form Bean is not found in the
specified scope, an instance is created and placed in the specified scope. Next, Struts calls
the reset( ) method on the Form Bean so that any processing is executed that needs to occur
before the Form Bean is populated. After that, Struts populates the Form Bean with data from
the incoming request. Next, the Form Bean’s validate( ) method is called. The next step in
the process is based on the return value from the validate( ) method. If the validate( ) method
records any errors and subsequently returns a non-null ActionErrors object, Struts forwards
back to the action’s input page. If, however, the return value from the validate( ) method is

null, Struts continues processing the request by calling the action’s execute( ) method.
DynaActionForms

A useful addition to the 1.1 release of Struts was the introduction of Dynamic Form Beans.
Dynamic Form Beans are an extension of Form Beans that allows you to specify their
properties inside the Struts configuration file instead of having to create a concrete class, with
a getter and setter method for each property. The concept of Dynamic Form Beans originated
because many developers found it tedious to create for every page a Form Bean that had a

getter and setter method for each of the fields on the page’s HTML form. Using Dynamic



Form Beans allows the properties to be specified in a Struts configuration file. To change a

property, simply update the configuration file. No code has to be recompiled.

The following snippet illustrates how Dynamic Form Beans are configured in the Struts

configuration file:

<I-- Form Beans Configuration --> <form-beans> <form-bean

name="employeeForm" type="org.apache.struts.action.DynaActionForm">  <form
-property name="firstName" type="java.lang.String"/>  <form-property
name="lastName" type="java.lang.String"/>  <form-property
name="department" type="java.lang.String"/> </form-bean> </form-beans>

Dynamic Form Beans are declared in the same way as standard Form Beans, by using

the form-bean tag. The difference is that the type of the Form Bean specified with the form-
bean tag’s type attribute must be org.apache.struts.action.DynaActionForm or a subclass
thereof. Additionally, the properties for Dynamic Form Beans are specified by nesting form-
property tags beneath the form-bean tag. Each property specifies its name and class type.
Additionally, an initial value for the property can be specified using the form-

property tag’s initial attribute, as shown next:

<form-property
name="department" type="java.lang.String" initial="Engineering"/>
If an initial value is not supplied for a property, Struts sets the initial value using Java’s

initialization conventions. That is, numbers are set to zero and objects are set to null.

Because you declare Dynamic Form Beans in the Struts configuration file instead of creating
concrete classes that extend ActionForm, you do not define reset( ) or validate( ) methods
for the Dynamic Form Beans. The reset( ) method is no longer necessary for setting default
values because the initial attribute on the form-property tag achieves the same effect.

The DynaActionForm class’s implementation of the reset( ) method resets all properties to
their initial value when it is called. You can either code the functionality of the validate(

) method inside action classes or use the Validator framework for validation. These two
options eliminate the need to create a validate( ) method on the Form Bean. If, however, you
have a special case where you need to have an implementation of the reset( ) and/or validate(

) method for your Dynamic Form Bean, you can subclass DynaActionForm and create the



methods there. Simply specify your DynaActionForm subclass as the type of the Form Bean
in the Struts configuration file to use it.

JSP Tag Libraries

Struts comes packaged with a set of its own custom JSP tag libraries that aids in the
development of JSPs. The tag libraries are fundamental building blocks in Struts applications
because they provide a convenient mechanism for creating HTML forms whose data will be
captured in Form Beans and for displaying data stored in Form Beans. Additionally, Struts’
tag libraries provide several utility tags to accomplish things such as conditional logic,
iterating over collections, and so on. With the advent of the JSP Standard Tag Library
(JSTL), many of the utility tags have been superceded. (Using JSTL with Struts is covered in
Chapter 15.)

Following is a list of the Struts tag libraries and their purpose:

o HTML Used to generate HTML forms that interact with the Struts APIs.

o Bean Used to work with Java bean objects in JSPs, such as to access bean values.

o Logic Used to cleanly implement simple conditional logic in JSPs.

o Nested Used to allow arbitrary levels of nesting of the HTML, Bean, and Logic tags

that otherwise do not work.

Later in this book, each of these libraries has an entire chapter dedicated to its use, but this
section provides a brief introduction to using the tag libraries, focusing on Struts’ core JSP
tag library, the HTML Tag Library, as an example. This library is used to generate HTML
forms that, when submitted, populate Form Beans. Additionally, the HTML Tag Library tags
can create HTML forms populated with data from Form Beans. To use the HTML Tag
Library in a Struts application, you need to include a snippet like the following in your

application’s Web Archive (.war) deployment descriptor, web.xml:

<taglib> <taglib-uri>/WEB-INF/tlds/struts-html.tld</taglib-uri> <taglib-location>/WEB-
INF/tlds/struts-html.tld</taglib-location> </taglib>
This snippet sets up the HTML Tag Library. For information on setting up the other tag

libraries, see their respective chapters.



Recall from the overview of the web.xml file in Chapter 2 that the <taglib-uri> tag is used to
declare the URI (or alias) that will be referenced in each of your JSPs with a taglib directive.
The <taglib-location> tag is used to declare the actual location of the Tag Library Descriptor
(.tld) file in your Web Archive.

The following snippet illustrates how your JSPs declare their use of the HTML Tag Library
with a JSP taglib directive:

<%@ taglib uri="/WEB-INF/tlds/struts-html.tld" prefix="html" %>

Notice that the uri attribute specified here is the same as that declared with the <taglib-uri>
tag in the web.xml file. Also, notice that the prefix attribute is set to html. This attribute can
be set to whatever you want; however, html is the accepted default for the HTML Tag
Library. The prefix attribute declares the prefix that each tag must have when it is used in the

JSP, as shown here:

<html:form action="/Search">
Because html is defined as the prefix, the form tag is used as shown. However, if you were

to choose to use a prefix of struts-html, the tag would be used as follows:

<struts-html:insert attribute="header"/>



	Struts and the View Layer
	JSP Pages
	Form Beans
	Configuring Form Beans
	The reset( ) Method
	The validate( ) Method
	The Lifecycle of Form Beans
	DynaActionForms

	JSP Tag Libraries


